git good

Learn to use git for version control

University of Warwick it
.. Computing Society g

Has this ever happened to you?

|

Copy Of Essay.doc Essay2.doc Essay2withconclu Essay-FINALdoc EssayFINALFINAL EssayFINALFINAL
EssayFINALFINAL sion.doc doc 2.doc
2.doc

Why is this bad?

o Multiple copies of nearly the same thing
o Need toremember which one is the latest one

o Gets worse with multiple files
o Gets even worse with multiple people

So why do we do it?

o We might care about the history of a file
o Especially important when workingin a group
o We might want to experiment with changes
- (and get back to the old state if it didn't work)

Is there a better way?

Version control

o Software that tracks changes made to files
o Most often used for source code, but can be anything
o Lots of different ones

- CVS, SVN, Bazaar, Perforce (@), Mercurial
o git

Why git?

o It's really popular!
o ~90% market share
> Many open source projects and most (tech) companies use
it
o It's ergonomic and has powerful features
o Cheap local branching, distributed model|, ...
o Easier to use/learn than competitors
o https://z.github.io/whygitisbetter/

https://z.github.io/whygitisbetter/

About git

o Created by Linus Torvalds for use developing the Linux
kernel

o It's free, and open source!

e Over 18 years old

o First released in July 2005
o Older than some of you...?

Aim of this talk

e Give an introduction to basic git

o Convince you that git is worth using

The command line

e Who's used the command line before?

e Git uses subcommands

o g1t <subcommand> <flags> <arguments>
e Can easily find documentation with

o man git <subcommand>

Repositories

e Repositories are just folders managed by git
o Can be thought of as a project
o Tracks changes over time
o Also called a “repo”

e git 1nit initialises a repository in the current folder

o Internal workings stored in the .git folder
o Don’t touch this!

~/Glt Good) ls -a

~/Glt Good) git intit

Initialized empty Git repository in /home/edjg/Git Good/.git/
~/Git Good) ls -a

. .. .git

~/Git Good) []

Working directory

e The "state" of your project
- What you see when you type 1s (excluding .git folder)
o If there are no changes since the last commit, we say it is
"clean”

e We make changes in the working directory as we
develop our code

o« We can see what has changed in the working directory
with the git status command

~/Git Good) git status
On branch matin

No commits yet

nothing to commit (create/copy files and use "git add" to track)
~/Git Good) []

What is a commit?

o« Commits are snapshots in history of the repository

o« 'Named" by hashes of their content
o Commits can be referred to by that hash

0
1

a
b
output = f"{a}, {b}"
for 1 in range(3, 11):
a, b=Db, a+b
output += f", {b}"

print(output)

2 2 2 2 2 2 2 2 2

2

2

twq |

~/Git Good » vim fibonaccti.py
~/Glt Good ls -a

. .. fibonacci.py .git

~/Glt Good python3 fibonaccti.py
o, 1, 1, 2, 3, 5, 8, 13, 21, 34
~/Git Good) git status

On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)
fibonacci.py

nothing added to commit but untracked files present (use "git add" to track)
~/Git Good) []

Staging area

e The changes we want to include in the next commit
o Sometimes we only want to pick some of the changes!

e We can add things to the staging are with the git
add command

o These will also show up when we re-run git status

~/Git Good » git add fibonacci.py
~/G1t Good) git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..
new file: fibonacci.py

~/Git Good) ls -a
. .. fibonacci.py .git
~/Git Good) []

." to unstage)

Making a commit

o Taking a snapshot of the changes we picked in our
staging area

e Usethe git commit command to make one

o Usethe -mflag to give them short messages
s Should be an imperative phrase

~/Git Good » git commit -m "Add fibonacci program"
[main (root-commit) d7ba96e] Add fibonacci program
1 file changed, 11 insertions(+)

create mode 100644 fibonacctil.py

~/G1t Good » git status

On branch main

nothing to commit, working tree clean

~/Gilt Good) 1ls -a

. .. fibonacci.py .git

~/Git Good) []

The three stages of a file

ﬁ it ad\/

(Moctifved | [Staged
Add/ C.lf\am::fe, . .
Bile git commit

(Comm?‘t‘tedj L

0
1

a
b
output = f"{a}, {b}"
for 1 in range(3, 1f):
a, b=Db, a+b
output += f", {b}"

print(output)

2 2 ¢ 2 2 2 2 ¢ ¢ ¢ ¢

6,20

All

Git Good Demo

This is a program which prints Fibonacci numbers.

I wrote it as an example for the UWCS "Git Good" talk.

twq |

~/Git Good » vim fibonaccti.py

~/Git Good vim README.md

~/Git Good) 1s -a

. .. fibonacci.py .git README.md

~/Git Good » python3 fibonacci.py

e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377
~/Git Good) git status

On branch main

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: fibonaccti.py

Untracked files:
(use "git add <file>..." to include in what will be committed)
README . md

no changes added to commit (use "git add" and/or "git commit -a")
~/Git Good) []

~/Git Good) git add fibonacci.py README.md
~/Git Good) git add --all

~/Git Good) git status

On branch matin

Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: README . md
modified: fibonaccti.py

~/Glt Good) ls -a

. .. fibonacci.py .git README.md
~/Glt Good) []

~/Git Good) git commit -m "Update range and add README"
[main bleble6] Update range and add README
2 files changed, 7 insertions(+), 1 deletion(-)
create mode 100644 README.md
~/Git Good) git status
On branch matin
nothing to commit, working tree clean
~/Git Good) 1ls -a
. .. fibonacci.py .git README.md
~/Git Good) []

Recap so far

o Making repositories with glt 1nit
o Looking at their state with glt status
o Adding to the staging area with git add

o Taking snapshots of history with git commit

Questions?

Looking at histories with log

e The git log command lets us look back on our
commit history

o We can use some flags to make it look prettier
o =--color --oneline --graph —decorate --all
o Will use these in all examples going forward

commit bleble6e54df8b4c34d4d54fabc20a89e7adf3e? (
Author: EdmundGoodman <egoodman3141@gmail.com>
Date: Tue Sep 26 00:13:35 2023 +0100

Update range and add README
commit d7ba96eb41ad0c936ffe24eabblb7fd58c49delld
Author: EdmundGoodman <egoodman3141@gmail.com>
Date: Tue Sep 26 00:07:15 2023 +0100

Add fibonacci program

IZEZZZZZEEZZ
m
=
(w
]

blebleb () Update range and;;HaMREADME
d7ba96e Add fibonacci program

2 2 2 2 2 2 2 2 2 2 * o+

IZEZZZZZZEZ
m
=
(w
]

Time travelling with checkout

e Thegit checkout command lets us travel around the
history of our repo

e git checkout <name> lets us visit commits
o Working directory must be clean, otherwise we'd lose our
changes!

e HEAD is a synonym for the current location history
o Don't need toremember long hashes

e HEAD~n means the nth previous commit

~/Glt Good) 1s -a

. .. fibonacci.py .git README.md
~/G1t Good » git checkout HEAD

~/Git Good) 1s -a

. .. fibonacci.py .git README.md
~/Git Good) []

~/Gilt Good) 1s -a

. .. fibonacci.py .git README.md
~/Git Good) git checkout HEAD~1
Note: switching to 'HEAD~1'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>
Or undo this operation with:

git switch -
Turn off this advice by setting config variable advice.detachedHead to false
HEAD is now at d7ba96e Add fibonacci program

~/Git Good ls -a
fibonacci.py .git

blebleb () Update range and add REA
d7ba96e () Add fibonacci program

2 2 2 2 2 2 2 2 2 2 * 4

IZEZZZZZZEZ
m
=
o
]

~/Git Good) ls -a

. .. fibonacci.py .git
~/Git Good » cat fibonaccti.py
a=2=0

b=1

output = f"{a}, {b}"
for 1 in range(3, 11):
a, b=>b, a+b

output += f", {b}"
print(output)

~/Git Good) []

~/Git Good » git log --color --oneline ——éFéﬁﬁh——decorate --all

~/Git Good) 1s -a
. fibonacci.py .git
~/Git Good) git checkout matin

Previous HEAD position was d7ba96e Add fibonacci program
Switched to branch 'main’
~/Gilt Good) 1s -a

. .. fibonacci.py .git README.md
~/Glt Good) []

Branches: into the multiverse

o We can make "alternative universes”
e You can think of a branch as just a series of commits

o We've used branches already!
o "main" (sometimes "master") is the default branch we
started on
o Generally kept both up-to-date and not broken...

Why branches?

e Sometimes we want to experiment
o Ifit doesn't work out, just discard the branch
o Helps isolate feature development

o Makes collaborative work easier (we'll discuss this
more later)

How branches?

e The git branch command creates a new branch
starting at the commit you're currently on

e To commit to the new branch, check it out!
e Modern version is git switch <branch-name>

~/Git Good » git branch

* matin
~/Git Good > |}

~/Git Good) git branch user-input
~/G1t Good) git branch
* main

user-input
~/Git Good) git switch user-input
Switched to branch 'user-input'
~/Gi1t Good) git branch

main
* user-input
~/Git Good) |

import sys

0
1

a
b
output = f"{a}, {b}"

terms = int(sys.argv[1])

for 1 in range(3, terms + 1):
a, b=>b, a+b

output += f", {b}"

print(output)

2

2

2

2

:wq |

~/Git
~/Git
0, 1,
~/Git
0, 1,
~/Git
~/Git

Good
Good
1, 2, 3
Good
1, 2, 3
Good
Good

vim fibonaccti.py
python3 fibonacci.py 5

python3 fibonacci.py 10

, 5, 8, 13, 21, 34

git add --all

git commit -m "Add user input for number of terms"

[user-input 12a17d7] Add user input for number of terms
1 file changed, 4 insertions(+), 1 deletion(-)
Good) []

~/Glt

~/Git Good) python3 fibonacci.py not_a_number
Traceback (most recent call last):
File "/home/edjg/Git Good/fibonacci.py", line 7, in <module>
terms = int(sys.argv[1])
ValueError: invalid literal for int() with base 10: 'not_a_number'
~/Git Good) []

import sys

0
1

a
b

output = f"{a}, {b}"

try:
terms = int(sys.argv[1])

except:
print("That isn't a number! Defaulting to 10 terms")
terms = 10

for 1 in range(3, terms + 1):
a, b=Db, a+b
output += f", {b}"
print(output)

~J

:wq |

~/Git Good) vim fibonaccti.py

~/Git Good python3 fibonacci.py not_a_number
That isn't a number! Defaulting to 10 terms

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

~/Git Good) git add --all

~/Git Good) git commit -m "Add input validation"
[user-input 2550d87] Add input validation

1 file changed, 6 insertions(+), 1 deletion(-)
~/Git Good) []

~/Git Good) git switch main

Switched to branch 'main’

~/G1t Good » vim fibonaccti.py

~/Git Good) python3 fibonaccti.py

The first fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377
~/Git Good) git add --all

~/Git Good) git commit -m "Add output explanation”

[main ad08acO®] Add output explanation

1 file changed, 1 insertion(+), 1 deletion(-)
~/Git Good) []

0
1

a
b
output = f"{a}, {b}"

for 1 in range(3, 16):

a, b=>b, a+b
output += ", {b}"

print(f"The first fibonacci numbers are: {output}")

nJ
nJ

~

* ad08acO () Add output explaﬁgf{BB
| * 2550d87 () Add input validation

* 12al17d7 Add user input for number of terms
/

bleble6 Update range and add README

d7ba96e Add fibonacci program

|

|

*
*
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

m

=

o
L

(

* ad08ach () Add output explanation
| * 2550d87 () Add input validation
* 12al17d7 Add user input for number of terms
/
bleble6 Update range and add README

d7ba96e Add fibonacci program .
HEAD, main

|
|
*
*
~
~
N ¢
~
~
~
~
~
~
~
~
~
~
~
~
~

}

(branch

m

=

o
L

Questions?

What is merging?

e Sometimes we want to have changes from more than

ohe branch

- Forexample, if we developed a feature in a branch, and
want to include it in our main branch

e We can "merge" branch B into branch A to give branch
A the changes from branch B

HEAD, main

v

7 %@
/ M

Squashed commits part
of merge commit

HEAD, main

How to merge

o Switch to the branch you want to merge into
e Usethe git merge <other> command to merge the

other branch into it
o Creates a new commit containing the changes from the

other branch on the current branch
- Does not modify the other branch

~/Git Good) git switch main
Already on 'main’

~/Git Good > git merge user-input []

- e
Merge branch 'user-input'

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.

#

Lines starting with '#' will be ignored, and an empty message aborts
the commit.

twq[|

~/Git Good) git switch main
Already on 'main'

~/Gilt Good) git merge user-input

Auto-merging fibonaccti.py

Merge made by the 'ort' strategy.
fibonacci.py | 10 ++++++44+-

1 file changed, 9 insertions(+), 1 deletion(-)
~/Git Good >]

240024d () Merge branch 'dgg;r{nput'

*

|\

| * 2550d87 () Add input validation
| * 12a17d7 Add user input for number of terms
* | ad08acO Add output explanation

|/

* bleble6b Update range and add README

* d7ba96e Add fibonacci program

m
=
o
L]

240024d () Merge branch 'd;gérinput'

-

2550d87 () Add input validation
12a17d7 Add user input for number of terms
ad08acl Add output explanation

— %

\

bleble6 Update range and add README
d7ba96e Add fibonacci program

HEAD, main

2.2 2 2 2 2 2 2 o’ B o 2 T R A A— A——— F

m
=
o
L]

branch

import sys

0
1

a
b

output = f"{a}, {b}"

try:
terms = int(sys.argv[1])

except:
print("That isn't a number! Defaulting to 10 terms")
terms = 10

for 1 in range(3, terms + 1):
a, b=Db, a+b
output += f", {b}"

print(f"The first fibonacci numbers are: {output}")

~J
~J

~

"fibonacci.py" 19L, 289B

1,1

All

Questions?

Something broke my merge!

o« Sometimes, git is unable to merge automatically
o For example, a line is changed in both branches, and it
doesn't know which one to pick

e This is called a merge conflict

o You have to resolve it manually
o Outside the scope of this course, but lots of online tutorials

o You should be careful when doing this

Changing history

o One of the benefits of version control is easily fixing

mistakes!
e The git revert command undoes a single commit
o Creates a new commit doing the undoing the old one

e The git reset command is more dangerous
o Won't discuss now, look it up if you need it
o Soft/mixed doesn't affect working directory, only HEAD
o Hard discards everything back to a specified point

import sys

0
1

a
b
print("Garden tiger moth"])
output = f"{a}, {b}"

try:
terms = int(sys.argv[1])

except:
print(“That isn't a number! Defaulting to 10 terms")
terms = 10

for 1 in range(3, terms + 1):
a, b=Db, a+b
output += f", {b}"

print(f"The first fibonacci numbers are: {output}")

~

-- VISUAL LINE --

6,26

All

* abcbfbe () Oh no, a bug...
240024d Merge branch 'user-input'

\

* 2550d87 () Add input validation
* 12al17d7 Add user input for number of terms
| ad08acO Add output explanation
/

bleble6 Update range and add README

d7ba96e Add fibonacci program

*
|
|
|

*
|

*

*

~

~
~
~
~
~N
~
~
~
~
~
~
~

m
=
o
L]

(

~/Git Good) git log --color --oneline ————decorate --all
~/Git Good) git revert a6c6fbel]

Revert "Oh no, a bug..."

This reverts commit a6bc6fbe7a5409b4a672de82fd16cb6bce33c247d1.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
3

On branch matin

Changes to be committed:

modified: fibonaccti.py
#

~

2

2

"~/Git Good/.git/COMMIT_EDITMSG" 11L, 299B

i F% |

All

- e o
* 106f34c () Revert "Oh no, a bug..."

* abc6fbe Oh no, a bug...
240024d Merge branch 'user-input'

\

* 2550d87 () Add input validation
* 12al17d7 Add user input for number of terms
| ad08acO Add output explanation
3

bleble6 Update range and add README

d7ba96e Add fibonacci program

*
|
|
|

*
|
*
*

~

~
~
~
~
~
~
~
~
~
~
~

m
=
o
L

(

Remote work

o« Remote repos are versions of a repo that live online
e The git remote command lets you manage them

e This allows us to collaborate!
o GitHub, GitLab, and others offer remote repo hosting
o You can also do it yourself for a challenge!

~/Gilt Good) git remote add origin https:;7d{€ﬁub.com/EdmundGoodman/git—good-demo.git N

~/Git Good) git push origin main

Enumerating objects: 23, done.

Counting objects: 100% (23/23), done.

Delta compression using up to 8 threads

Compressing objects: 100% (22/22), done.

Writing objects: 100% (23/23), 2.35 KiB | 401.00 KiB/s, done.

Total 23 (delta 7), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (7/7), done.

To https://github.com/EdmundGoodman/git-good-demo.git
* [new branch] main -> main

~/Git Good) []

g git-good-demo ' Public

¥ main ~ P 1branch ©0tags

? EdmundGoodman Revert "Oh no, a bug..." -

[N README.md Update range and add README
4 fibonacci.py Revert "Oh no, a bug...”
README.md

Git Good Demo ¢

This is a program which prints Fibonacci numbers.

[wrote it as an example for the UWCS "Git Good" talk.

s Pin

Go to file Add file ~

106F34c 8 minutes ago

& Unwatch 1

9 8 commits

36 minutes ago

8 minutes ago

Z

-

% Fork 0 - P Star 0 -

About T
The demo for the "Git Good" UWCS talk
[0 Readme

Activity

0 stars

1 watching

€ QO B <

0 forks

Releases

No releases published
Create a new release

Packages

Mo packages published
Publish your first package

Languages

A
® Python 100.0%

Remotes and cloning

e You can get a local copy of a remote repo by "cloning"
it

e The git clone subcommand does this

o Sometimes software is distributed by cloning the repo,
then building/running it yourself

~/Glt Good 1ls -a

~/Git Good) git clone https://github.com/EdmundGoodman/git-good-demo
Cloning into 'git-good-demo'...

remote: Enumerating objects: 23, done.

remote: Counting objects: 100% (23/23), done.

remote: Compressing objects: 100% (15/15), done.

remote: Total 23 (delta 7), reused 23 (delta 7), pack-reused 0
Receiving objects: 100% (23/23), done.

Resolving deltas: 100% (7/7), done.

~/Git Good ls -a

. .. git-good-demo

~/Gi1t Good) ls -a git-good-demo

. .. fibonacci.py .git README.md

~/Git Good) []

Remotes and branches

e Local branches can correspond to remote branches
o The remote copy is called <remote>/<branch>, for example
origin/main
o You can have local branches which aren't on the remote
(and vice versa)

Fetch, Push, and Pull

e git fetch updates what the local repo knows about
the remote repo

e git push updates the remote branch from the local
branch

e git pull updates the local branch from the remote

branch

o Thisislike agit fetch followed by a
git merge <remote>/<branch>

git-good-demo / README.md in main Cancel changes Commit changes...
Preview &3 Code 55% faster with GitHub Copilot Spaces ¢ 2% Soft wrap ¢

G6it Good Demo
This is a program which prints Fibonacci numbers.
I wrote it as an example for the UWCS "Git Good" talk.

1
2
3
4
5
6
7 I edited this in the GitHub web UI!
8

Commit changes X

Commit message

Update README.md

Extended description

Add an optional extended description..

O commit directly to the main branch

(O Create a new branch for this commit and start a pull request

Cancel Commit changes

* 106f34c (, origin/main) RevéFfﬁubh ng; a bug.:."
* abc6fbe Oh no, a bug...
240024d Merge branch 'user-input'

\

* 2550d87 () Add input validation

* 12al7d7 Add user input for number of terms

| ad08ac0O Add output explanation
4

bleble6 Update range and add README

d7ba96e Add fibonacci program

*
|
|
|

*
|
*
*

~

~
~
~
~
~
~
~
~
~
~
~

m
=
o
L

(

~/Git Good » git fetch origin

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), 724 bytes | 362.00 KiB/s, done.

From https://github.com/EdmundGoodman/git-good-demo
106f34c..e8f5c8b main -> origin/matin

~/Git Good) []

e8f5c8b (origin/main) Update README.md
106f34c () Revert "Oh no, a bug...'
abcb6fbe Oh no, a bug...

240024d Merge branch 'user-input'

\

* 2550d87 () Add input validation
* 12al7d7 Add user input for number of terms
| ad08acO Add output explanation
/

bleble6 Update range and add README

d7ba96e Add fibonacci program

2 2 2 2 2 2 02 2 02 Q¥ ok AX— X——— > % %X X%

—
m
=
o

—

]

~/Gl1t Good
From https://github.com/EdmundGoodman/git-good-demo

* branch main
Updating 106f34c..e8f5c8b
Fast-forward

README.md | 1 +

1 file changed, 1 insertion(+)
~/Git Good) []

git pull origin matin

-> FETCH_HEAD

e8f5c8b (, origin/main) UpdéEé &EADME.md

*

* 106f34c Revert "Oh no, a bug..."

* abc6fbe Oh no, a bug...

*x 240024d Merge branch 'user-input'

I\

| * 2550d87 () Add input validation
| % 12al17d7 Add user input for number of terms
* | ad08acO Add output explanation

|/

* blebleb Update range and add README

* d7ba96e Add fibonacci program

m
=
o
L]

Git Good Demo

This is a program which prints Fibonacci numbers.

I wrote it as an example for the UWCS "Git Good" talk.

I
]

~J

edited this in the GitHub web UI!

8,0-1

All

Git Good Demo

This is a program which prints Fibonacci numbers.
I wrote i1t as an example for the UWCS "Git Good" talk.

I edited this in the GitHub web UI!

H

edited this locally in Vim!

twq |

~/Gilt Good) vim README.md

~/Git Good) git add --all

~/Git Good) git commit -m "Update README.md again"

[main c9e6c78] Update README.md again

1 file changed, 3 insertions(+)

~/Git Good) git push origin main

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 356 bytes | 356.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To https://github.com/EdmundGoodman/git-good-demo.git
e8f5c8b..c9e6c78 main -> main

~/Git Good) []

git-good-demo / README.md (]

% EdmundGoodman Update README.md again c9e6c78 - 1 minute ago L) History

Preview Code Blame 10 lines (5 loc) - 192 Bytes £3 Code 55% faster with GitHub Copilot Raw B & 2 ~

Git Good Demo »

This is a program which prints Fibonacci numbers.
[wrote it as an example for the UWCS "Git Good" talk.
I edited this in the GitHub web UI!

[edited this locally in Vim!

Recap so far

Looking at histories with
Travelling in time with
Working with branches with
Undoing mistakes with

Working remotely with

git log

g1t checkout

git branch/merge
git revert

git remote/...

Top tips

e DO NOT COMMIT SECRETS

e Commit little and often

o Give commits meaningful names

o« Make small branches and merge regularly

e Clean up dead branches
o Can be done with git branch -d

& Do not commit secrets!!! 4

Installation

e Windows: https://git-scm.com/download/win

e Mac: https://git-scm.com/download/mac

o Both come with options to just use the command line
or to download a GUI program as well

e For Linux, it is almost always pre-installed (otherwise
use a package manager of your choice)

https://git-scm.com/download/win
https://git-scm.com/download/mac

Hate the command line?

o Lots of software exists to help manage git repos
graphically
o Git GUI for windows
o SourceTree for Mac

e Almost all modern IDEs also have git plugins
o Thisincludes VSCode!

lgnoring files

e Sometimes you don’t want to keep track of certain

files

- Generated files (. jar, __pycache__), databases, etc.
o Putsecretsin an ignored .env file

e Create afile called .gitignore in the repository
o This can contain a list of globs of filenames to ignore

https://git-scm.com/docs/gitignore

Configuration

e Git is very configurable!

o Many things can be changed, including
o Default editor, commit template, global gitignore, merge
tOOI, a“ases, handling of whitespace, defaultlogin credentials...

e Usethe git config command to do this
o Can do this on a project, user, or system level

@ EVERYTHING IS ON FIRE HELP (@)

o Especially when inexperienced, it can be easy to mess
up

e Someone has messed up exactly how you have before

o https://ohshitgit.com to fix many common mistakes

https://ohshitgit.com

This was just an introduction

e« We have barely scratched the

surface of what git can do
o Hopefully enough to get
started/convince you git is useful

‘.gitattributes’

R - GitHubS% gitclone
gita

git commit

git push Z GItHub Desktop.lpp
git init

git config . : . “.gitignore’
git add foo <A ‘;&‘ gistatys
de by the !recurslve stragegy.'
e —

git reset --hard HEAD

1 ‘<<<<<<< HEAD'
git branch z =
rm -rf bar; git clone https://github.com/foo/bar

git checkout g
git fetch git log gt
git merge i ,‘#
i chgckouﬁ\f;o
glt di kﬁtch upstream gl(&hmote -v

.
git commit -am «s"iglt moEREpstieam/mastr git stash

git push ~-force git push origin HEAD:ré?,cr/;\gs'ter
git push origin :foo

git cherry-pick />>>>>>> bar'

git pull --rebase git rebase -i

git submodule % gitgrep git blame

iy git tag

git subtree cp pro-commit sq qlt/hooé/ e-commit

git rev-parse --shaw-toplovel ﬁtllnfolegclude git blsscy
git merge - Waster mergeoptions = --no-ff'
git branch --merged | xargs git branch -d

git reset -p HEAD" git update-index --assume-unchanged

git reflog git daemon --reuseaddr --verbose --base-path=./.git

git rerere git worktree git fsck
git filter-branch

‘git gets easier once you get the basic idea that
branches are homeomorphic endofunctors mapping
submanifolds of a Hilbert space’

https://twitter.com/zadow28/status/787555337343799297

| want to learn more!

o Git Reference — http://git.github.io/git-
reference/index.html

e Pro Git — https://book.git-scm.com/book/en/v2

e Learn Git Branching — https://learngitbranching.js.org/

e GitHub and Atlassian both have helpful pages on many
topics

http://git.github.io/git-reference/index.html
http://git.github.io/git-reference/index.html
https://book.git-scm.com/book/en/v2
https://learngitbranching.js.org/

When will | ever use this???

* Good for programming course-work (e.g. 118)
* Eases collaboration in group projects

* When you get a job, it will probably use git in some
way

| want to practice using git!

o Luckily for you, we are running a workshop!
o Put everything we've covered today into practice
o Get help if you get stuck

e During Comp Café next week
o 5-6pm, Tuesday 3rd October
o CS0.06 (the lab on the right as you come into DCS)

o Free food!
o Be there or be

7

!
University of Warwick
®e Computing Society

| am an (un-)paid shill...

o Hopefully you found this talk interesting!

o If you did, we do loads more academic

events throughout the year
o If you are currently bored to death/asleep, E

we do other things too! "§ ‘ T
£ N
fal Y
154

l]
% "'.Ea.
University of Warwick EE _l_!:

.. Computing Society

Questions?

	Slide 1: git good
	Slide 2: Has this ever happened to you?
	Slide 3: Why is this bad?
	Slide 4: So why do we do it?
	Slide 5: Is there a better way?
	Slide 6: Version control
	Slide 7: Why git?
	Slide 8: About git
	Slide 9: Aim of this talk
	Slide 10: The command line
	Slide 11: Repositories
	Slide 12
	Slide 13: Working directory
	Slide 14
	Slide 15: What is a commit?
	Slide 16
	Slide 17
	Slide 18: Staging area
	Slide 19
	Slide 20: Making a commit
	Slide 21
	Slide 22: The three stages of a file
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Recap so far
	Slide 29: Questions?
	Slide 30: Looking at histories with log
	Slide 31
	Slide 32
	Slide 33: Time travelling with checkout
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Branches: into the multiverse
	Slide 40: Why branches?
	Slide 41: How branches?
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Questions?
	Slide 53: What is merging?
	Slide 54
	Slide 55
	Slide 56
	Slide 57: How to merge
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Questions?
	Slide 65: Something broke my merge!
	Slide 66: Changing history
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Remote work
	Slide 73
	Slide 74
	Slide 75: Remotes and cloning
	Slide 76
	Slide 77: Remotes and branches
	Slide 78: Fetch, Push, and Pull
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Recap so far
	Slide 91: Top tips
	Slide 92: ✨Do not commit secrets!!! ✨
	Slide 93: Installation
	Slide 94: Hate the command line?
	Slide 95: Ignoring files
	Slide 96: Configuration
	Slide 97: 🔥EVERYTHING IS ON FIRE HELP🔥
	Slide 98: This was just an introduction
	Slide 99: I want to learn more!
	Slide 100: When will I ever use this???
	Slide 101: I want to practice using git!
	Slide 102: I am an (un-)paid shill...
	Slide 103: Questions?

