
git good
Learn to use git for version control



Has this ever happened to you?



Why is this bad?
● Multiple copies of nearly the same thing

○ Need to remember which one is the latest one

● Gets worse with multiple files
● Gets even worse with multiple people



So why do we do it?
● We might care about the history of a file

○ Especially important when working in a group

● We might want to experiment with changes
○ (and get back to the old state if it didn't work)



Is there a better way?



Version control
● Software that tracks changes made to files

○ Most often used for source code, but can be anything

● Lots of different ones
○ CVS, SVN, Bazaar, Perforce (🤮), Mercurial
○ git



Why git?
● It's really popular!

○ ~90% market share
○ Many open source projects and most (tech) companies use 

it

● It's ergonomic and has powerful features
○ Cheap local branching, distributed model, …
○ Easier to use/learn than competitors
○ https://z.github.io/whygitisbetter/

https://z.github.io/whygitisbetter/


About git
● Created by Linus Torvalds for use developing the Linux 

kernel
● It's free, and open source!
● Over 18 years old

○ First released in July 2005
○ Older than some of you…?



Aim of this talk

● Give an introduction to basic git

● Convince you that git is worth using



The command line
● Who's used the command line before?
● Git uses subcommands

○ git <subcommand> <flags> <arguments>
● Can easily find documentation with

○ man git <subcommand>



Repositories
● Repositories are just folders managed by git

○ Can be thought of as a project
○ Tracks changes over time
○ Also called a “repo”

● git init initialises a repository in the current folder

● Internal workings stored in the .git folder
○ Don’t touch this!





Working directory
● The "state" of your project

○ What you see when you type ls (excluding .git folder)
○ If there are no changes since the last commit, we say it is 

"clean"
● We make changes in the working directory as we 

develop our code
● We can see what has changed in the working directory 

with the git status command





What is a commit?
● Commits are snapshots in history of the repository
● "Named" by hashes of their content

○ Commits can be referred to by that hash







Staging area
● The changes we want to include in the next commit

○ Sometimes we only want to pick some of the changes!
● We can add things to the staging are with the git 
add command

● These will also show up when we re-run git status





Making a commit
● Taking a snapshot of the changes we picked in our 

staging area
● Use the git commit command to make one

○ Use the -m flag to give them short messages
■ Should be an imperative phrase





The three stages of a file













Recap so far

● Making repositories with git init

● Looking at their state with git status

● Adding to the staging area with git add

● Taking snapshots of history with git commit



Questions?



Looking at histories with log
● The git log command lets us look back on our 

commit history
● We can use some flags to make it look prettier

○ --color --oneline --graph –decorate --all
○ Will use these in all examples going forward







Time travelling with checkout
● The git checkout command lets us travel around the 

history of our repo
● git checkout <name> lets us visit commits

○ Working directory must be clean, otherwise we'd lose our 
changes!

● HEAD is a synonym for the current location history
○ Don't need to remember long hashes

● HEAD~n means the nth previous commit













Branches: into the multiverse
● We can make "alternative universes"
● You can think of a branch as just a series of commits
● We've used branches already!

○ "main" (sometimes "master") is the default branch we 
started on

○ Generally kept both up-to-date and not broken...



Why branches?
● Sometimes we want to experiment

○ If it doesn't work out, just discard the branch
● Helps isolate feature development
● Makes collaborative work easier (we'll discuss this 

more later)



How branches?
● The git branch command creates a new branch 

starting at the commit you're currently on

● To commit to the new branch, check it out!
● Modern version is git switch <branch-name>























Questions?



What is merging?
● Sometimes we want to have changes from more than 

one branch
○ For example, if we developed a feature in a branch, and 

want to include it in our main branch
● We can "merge" branch B into branch A to give branch 

A the changes from branch B





Squashed commits part 

of merge commit





How to merge
● Switch to the branch you want to merge into
● Use the git merge <other> command to merge the 

other branch into it
○ Creates a new commit containing the changes from the 

other branch on the current branch
○ Does not modify the other branch















Questions?



Something broke my merge!
● Sometimes, git is unable to merge automatically

○ For example, a line is changed in both branches, and it 
doesn't know which one to pick

● This is called a merge conflict
● You have to resolve it manually

○ Outside the scope of this course, but lots of online tutorials
● You should be careful when doing this



Changing history
● One of the benefits of version control is easily fixing 

mistakes!
● The git revert command undoes a single commit

○ Creates a new commit doing the undoing the old one
● The git reset command is more dangerous

○ Won't discuss now, look it up if you need it
○ Soft/mixed doesn't affect working directory, only HEAD
○ Hard discards everything back to a specified point













Remote work
● Remote repos are versions of a repo that live online
● The git remote command lets you manage them
● This allows us to collaborate!
● GitHub, GitLab, and others offer remote repo hosting

○ You can also do it yourself for a challenge!







Remotes and cloning
● You can get a local copy of a remote repo by "cloning" 

it
● The git clone subcommand does this
● Sometimes software is distributed by cloning the repo, 

then building/running it yourself





Remotes and branches
● Local branches can correspond to remote branches

○ The remote copy is called <remote>/<branch>, for example 
origin/main

○ You can have local branches which aren't on the remote 
(and vice versa)



Fetch, Push, and Pull
● git fetch updates what the local repo knows about 

the remote repo
● git push updates the remote branch from the local 

branch
● git pull updates the local branch from the remote 

branch
○ This is like a git fetch followed by a

git merge <remote>/<branch>

























Recap so far

● Looking at histories with git log

● Travelling in time with git checkout

● Working with branches with git branch/merge

● Undoing mistakes with git revert

● Working remotely with git remote/...



Top tips
● DO NOT COMMIT SECRETS
● Commit little and often
● Give commits meaningful names
● Make small branches and merge regularly
● Clean up dead branches

○ Can be done with git branch -d



✨Do not commit secrets!!! ✨



Installation
● Windows: https://git-scm.com/download/win
● Mac: https://git-scm.com/download/mac
● Both come with options to just use the command line 

or to download a GUI program as well
● For Linux, it is almost always pre-installed (otherwise 

use a package manager of your choice)

https://git-scm.com/download/win
https://git-scm.com/download/mac


Hate the command line?
● Lots of software exists to help manage git repos 

graphically
○ Git GUI for windows
○ SourceTree for Mac

● Almost all modern IDEs also have git plugins
○ This includes VSCode!



Ignoring files
● Sometimes you don’t want to keep track of certain 

files
○ Generated files (.jar, __pycache__), databases, etc.
○ Put secrets in an ignored .env file

● Create a file called .gitignore in the repository
○ This can contain a list of globs of filenames to ignore

https://git-scm.com/docs/gitignore


Configuration
● Git is very configurable!
● Many things can be changed, including

○ Default editor, commit template, global gitignore, merge 
tool, aliases, handling of whitespace, default login credentials…

● Use the git config command to do this
○ Can do this on a project, user, or system level



🔥EVERYTHING IS ON FIRE HELP🔥
● Especially when inexperienced, it can be easy to mess 

up
● Someone has messed up exactly how you have before
● https://ohshitgit.com to fix many common mistakes

https://ohshitgit.com


This was just an introduction
● We have barely scratched the 

surface of what git can do
○ Hopefully enough to get 

started/convince you git is useful

https://tw itter.com/zadow28/status/787555337343799297

https://twitter.com/zadow28/status/787555337343799297


I want to learn more!
● Git Reference – http://git.github.io/git-

reference/index.html
● Pro Git – https://book.git-scm.com/book/en/v2
● Learn Git Branching – https://learngitbranching.js.org/
● GitHub and Atlassian both have helpful pages on many 

topics

http://git.github.io/git-reference/index.html
http://git.github.io/git-reference/index.html
https://book.git-scm.com/book/en/v2
https://learngitbranching.js.org/


When will I ever use this???

• Good for programming course-work (e.g. 118)

• Eases collaboration in group projects

• When you get a job, it will probably use git in some 
way



I want to practice using git!
● Luckily for you, we are running a workshop!

○ Put everything we've covered today into practice
○ Get help if you get stuck

● During Comp Café next week
○ 5-6pm, Tuesday 3rd October
○ CS0.06 (the lab on the right as you come into DCS)
○ Free food!
○ Be there or be🟧 !



I am an (un-)paid shill...

● Hopefully you found this talk interesting!

○ If you did, we do loads more academic 

events throughout the year

○ If you are currently bored to death/asleep, 
we do other things too!



Questions?


	Slide 1: git good
	Slide 2: Has this ever happened to you?
	Slide 3: Why is this bad?
	Slide 4: So why do we do it?
	Slide 5: Is there a better way?
	Slide 6: Version control
	Slide 7: Why git?
	Slide 8: About git
	Slide 9: Aim of this talk
	Slide 10: The command line
	Slide 11: Repositories
	Slide 12
	Slide 13: Working directory
	Slide 14
	Slide 15: What is a commit?
	Slide 16
	Slide 17
	Slide 18: Staging area
	Slide 19
	Slide 20: Making a commit
	Slide 21
	Slide 22: The three stages of a file
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Recap so far
	Slide 29: Questions?
	Slide 30: Looking at histories with log
	Slide 31
	Slide 32
	Slide 33: Time travelling with checkout
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Branches: into the multiverse
	Slide 40: Why branches?
	Slide 41: How branches?
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Questions?
	Slide 53: What is merging?
	Slide 54
	Slide 55
	Slide 56
	Slide 57: How to merge
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Questions?
	Slide 65: Something broke my merge!
	Slide 66: Changing history
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Remote work
	Slide 73
	Slide 74
	Slide 75: Remotes and cloning
	Slide 76
	Slide 77: Remotes and branches
	Slide 78: Fetch, Push, and Pull
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Recap so far
	Slide 91: Top tips
	Slide 92: ✨Do not commit secrets!!! ✨
	Slide 93: Installation
	Slide 94: Hate the command line?
	Slide 95: Ignoring files
	Slide 96: Configuration
	Slide 97: 🔥EVERYTHING IS ON FIRE HELP🔥
	Slide 98: This was just an introduction
	Slide 99: I want to learn more!
	Slide 100: When will I ever use this???
	Slide 101: I want to practice using git!
	Slide 102: I am an (un-)paid shill...
	Slide 103: Questions?

