
  



  

Has this ever happened to you?



  

What’s Wrong With This?
● Have to maintain several copies of near identical files
● A hassle to manage manually

– Multiple files make this even worse
● How do multiple people work on it?
● Even worse if you have multiple files in your project!



  

Although...
● We care about the history of files sometimes

– But only specific points
– We want to be able to find those points easily

● We want to experiment with changes
– And know we have a safe way to revert

● Tracking changes is important for team projects



  

Version Control
● Software that tracks changes to source code
● Also called “source control management”
● Examples include SVN, Mercurial, Perforce

– ...and git



  

Why git?
● git is really very popular

– 85-90% market share
– Used to manage these projects: the Linux Kernel, 

Android, Emacs, MySQL, PostgreSQL, Qt, Ruby, Wine, 
LibreOffice, MediaWiki, jQuery, Django...

– Used (to at least some extent) by: Apple, Amazon, 
Microsoft, Meta, Google...



  

About git
● Created by Linus Torvalds
● Free, open-source
● 17.5 years old
● https://git-scm.com/

https://git-scm.com/


  

Aim of This Talk

Give you a basic understanding of git

Convince you that git is a skill worth practicing



  

Command Line
● Git uses subcommands

– git <subcommand> <arguments>
● Each command has many flags

– man git <subcommand>



  

Repositories
● The init subcommand makes a new repository

– Also called a “repo”
● A repository is a folder being managed by git

– Think of it as a project
● All information that git needs is stored in the .git folder



  



  



  



  

Commits I: What
● A commit is a snapshot of history
● Commits have “names”, which are just hashes

– Can be referred to by that hash



  

Working Directory
● The “state” of your project

– If identical to a commit state, we say it’s “clean”
– If not, we can use the status subcommand to find what’s 

changed



  



  

Commits II: How
● We have made changes since the last commit
● To make a new commit:

– Stage your changes using the add subcommand
– Use the commit subcommand to make a new commit 

with these changes incorporated
● Use the -m flag to title your commit!
● Use the -v flag to write a longer message!



  



  



  



  



  



  



  



  



  



  

Log
● You can see the history of your repo using the log 

subcommand
● Plenty of ways to make it look nicer

– --color, --oneline, --graph, --decorate, --all



  



  

Checkout
● You can travel around the history of your repo!
● Use the checkout subcommand to visit a commit by 

using its hash
– Make sure your working directory is clean

● HEAD is used to refer to where you currently are
● You can go “back” from a commit using ~, e.g. HEAD~1



  



  



  



  



  

Branches I: What
● We can make “alternative timelines”!
● You can think of a branch as a series of commits
● Default branch is called “main” (or “master”)

– This is the branch that you start on
– Generally used as the “up-to-date” and “stable” version 

of a project



  

Branches II: Why
● Sometimes we want to experiment
● Helps isolate feature development

– Easier to choose not to incorporate a feature
● Collaborative work (we’ll get to this later)



  

Branches III: How
● To make a branch, use the branch subcommand
● You’ll create a branch on the commit that you’re 

currently on
● If you want to commit to the new branch, check it out!

– You can now also use git switch to switch branches



  



  



  



  



  



  



  



  

Merging I: What
● Sometimes we want the changes from more than one 

branch
– Could be bug fixes, features, etc.

● So we can merge branch B into branch A to give branch 
A the changes from branch B



  

Merging II: How
● Switch to the branch you want to merge into
● Use the merge subcommand to merge another branch 

into it
– Creates a new commit
– The branch that has been merged in does not change



  

Merging: In Pictures



  

Merging: In Pictures



  



  



  



  



  



  



  



  



  

Merging III: oh no
● Sometimes, git can’t merge cleanly
● This is called a merge conflict
● You have to resolve it manually

– Choose which version of the conflict is “correct”
– It could be a bit of both branches that you want to keep

● You should take care when doing this – look it up 
online if you’re unsure



  

Changing History
● Part of the benefit of version control is fixing mistakes!
● Use the revert subcommand to undo a commit

– This will make a new commit, whose sole purpose is undoing the 
bad commit

● The other option: the reset subcommand (a little more dangerous)
– Soft/Mixed: Doesn’t change your working directory, moves HEAD 

back
– Hard: Discards all changes back to a point



  



  



  



  



  



  

Remote Work
● Remote repos are versions of a repo that live online
● The remote subcommand lets you manage them
● This is how we collaborate!
● GitHub, GitLab offer remote repo hosting

– Can also do it yourself

https://github.com/
https://about.gitlab.com/


  



  



  

Remotes and Cloning
● You can get a local copy of a remote repo by cloning it

– Use the clone subcommand
● Depending on permissions, you can then contribute to 

the repo
● Some software is distributed using remote git repos



  

Remotes and Branches
● Branches locally can correspond to branches in a 

remote
– We call them <remote>/<branch>, e.g. origin/main

● You can also have branches locally that aren’t on the 
remote  (and vice versa)



  

Fetch, Push, and Pull
● Fetching updates what the local repo knows about the 

remote repo
● Pushing updates the remote branch with updates from 

the local branch
● Pulling a branch updates the local branch with updates 

from the remote branch
– Basically fetch + merge



  



  



  



  



  



  



  



  

“Pull Requests”
● A request for the remote repo owner to make a merge 
● When you’ve made changes on your own branch, and 

want them incorporated
● Stupid name

– Has nothing to do with “pulling” really
– GitLab (correctly) call them merge requests



  

Git In Practice: Top Tips
● DO NOT COMMIT SECRETS
● Commit little and often

– Less painful to revert smaller changes
● Make small branches and merge them in
● Clean up dead branches (use branch -d)
● DO NOT COMMIT SECRETS



  

Hate the Command Line?
● Lots of software exists for managing git repos

– Git GUI for Windows
– SourceTree for Mac

● Virtually all modern IDEs have git plugins
● ...including VSCode!



  

Installing
● Windows: https://git-scm.com/download/win
● Mac: https://git-scm.com/download/mac
● Both come with options to just use the command line 

or to download a GUI program as well
● For Linux, use the package manager of your choice

– But on Linux it’s almost definitely pre-installed

https://git-scm.com/download/win
https://git-scm.com/download/mac


  

Ignoring Files
● Sometimes you don’t want to keep track of certain files

– .jar files, __pycache__, databases
● .gitignore contains a list of regexes for git to ignore

– You might have to make this file yourself!



  

Config
● Git is very configurable, and a lot can be changed

– Default editor, commit template, global gitignore, merge tool, aliases, 
handling of whitespace, default login credentials….

● Use the config subcommand to edit them
– Can do this on a project, user, or system level



  

EVERYTHING IS ON FIRE HELP
● Especially when inexperienced, easy to mess up
● Someone has messed up exactly how you have before
● ohshitgit.com to fix many common mistakes

https://ohshitgit.com/


  

So Many More Features
● We’ve barely scratched the surface of what’s available
● But you can get value out of only what’s presented here
● Some other things to check out:

– Stashes, tags, rebasing, reflog, cherry-picking, bisect, 
blame, hooks...



  

How to learn more?
● Git Reference

– http://git.github.io/git-reference/index.html
● Pro Git

– https://book.git-scm.com/book/en/v2
● Learn Git Branching

– https://learngitbranching.js.org/
● GitHub have useful help pages on many topics

http://git.github.io/git-reference/index.html
https://book.git-scm.com/book/en/v2
https://learngitbranching.js.org/


  

Questions?
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