git good

Learn to use git for version control

a A UWCS Talk



Has this ever happened to you?

Copy Of Essay.doc EssayZ2.doc EssayZwithconclu  Essay-FINALdoc  EssayFINALFIMAL  EssayFINALFINAL
EssayFINALFINAL sion.doc doc 2doc
2.doc



What's Wrong With This?

Have to maintain several copies of near identical files

A hassle to manage manually
- Multiple files make this even worse

How do multiple people work on it?
Even worse if you have multiple files in your project!



Although...

 We care about the history of files sometimes
— But only specific points
- We want to be able to find those points easily
 We want to experiment with changes
- And know we have a safe way to revert

e Tracking changes is important for team projects



Version Control

o Software that tracks changes to source code
« Also called “source control management”

 Examples include SVN, Mercurial, Perforce
- ...and git



Why git?

e git is really very popular
- 85-90% market share

- Used to manage these projects: the Linux Kernel,
Android, Emacs, MySQL, PostgreSQL, Qt, Ruby, Wine,
LibreOffice, MediaWiki, jQuery, Django...

- Used (to at least some extent) by: Apple, Amazon,
Microsoft, Meta, Google...



About git

Created by Linus Torvalds
Free, open-source

17.5 years old
https:/git-scm.com/


https://git-scm.com/

Aim of This Talk

Give you a basic understanding of git

Convince you that git is a skill worth practicing



Command Line

e Git uses subcommands
- git <subcommand> <arguments>

 Each command has many flags
- man git <subcommand>



Repositories

* The init subcommand makes a new repository
- Also called a “repo”

 Arepository is a folder being managed by git
— Think of it as a project

* All information that git needs is stored in the .git folder



- Terminal

1
1

a
b
output = "{}, {}".format(a, b)

for 1 in range(3, 10 + 1):
b=a+b
a=b - a
output += ", {}".format(b)

print(output)

o

P

P

it

"fibonacci.py" 11L, 146C

168,0-1

All




+1 Terminal

~[fibonacci = python3 fibonacci.py
1.4, 2, 3, 5, 8, 13, 21, 34, 55
~/fibonacci = |}




I Terminal ] = _ O g

~[fibonacci = git init

Initialised empty Git repository in /home/sam/Documents/git-
good/examples/fibonacci/.git/

~ffibonacci = 1s -3

. .. fibonacci.py .git

~[fibonacci m»




Commits I: What

A commitis a snapshot of history

 Commits have “names”, which are just hashes
- Can be referred to by that hash



Working Directory

 The “state” of your project
- If identical to a commit state, we say it’s “clean”

- If not, we can use the status subcommand to find what'’s
changed



+1

~/fibonacci = git status
On branch master

No commits yet

Untracked files:
(use "git add <file>...
ted)
fibonaccli.py

Terminal

to include in what will be commit

nothing added to commit but untracked files present (use "gi

t add" to track)
~/fibonacci = |




Commits Il: How

 We have made changes since the last commit

 To make a new commit:
— Stage your changes using the add subcommand

- Use the commit subcommand to make a new commit
with these changes incorporated

e Use the -m flag to title your commit!
o Use the -v flag to write a longer message!



1 Terminal ] = _ O a

~/fibonacci = git add fibonaccil.py
~ffibonacci = git status
On branch master

No commits yet
Changes to be committed:

(use "git rm --cached <file>...
new file: fibonacci.py

to unstage)

~/fibonacci = git commit -m "First go at Fibonacci program"
[master (root-commit) 4afb4df] First go at Fibonacci program
1 file changed, 11 insertions(+)
create mode 100644 fibonacci.py
~/fibonacci w ||




1 Terminal

~[fibonacci = git status

On branch master

nothing to commit, working tree clean
~[fibonacci m»




I+ Terminal

? |
1

a
b
output = "{}, {}".format(a, b)

for 1 in range(3, 10 + 1):
b=a+b
a=b-a
output += ", {}".format(b)

print("The first 10 numbers are: " +floutput)

11,37

All




< Terminal ] = _ O e

Hello! This 1s a program which outputs Fibonacci numbers!

I wrote this as an example for the "Git Good" talkfl

"README.md" 3L, 111C written 30l All




< Terminal @] = _ O e

~ffibonacci = git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working
directory)

modified: fibonacci.py

Untracked files:
(use "git add <file>...
ted)

to include in what will be commit

README . md

no changes added to commit (use "git add"” and/or "git commit
_a!l
~/fibonacci = |




=1 Terminal

Q

~/fibonacci = git add fibonacci.py README.md




[+1 Terminal ] =

~[fibonacci = git add --all
~/fibonacci = git status
On branch master
Changes to be committed:
(use "git restore --staged <file>...
new file: README . md
modified: fibonacci.py

to unstage)

~/fibonacci = git commit -vjj




= Terminal el = _ O @

Added user-facing explanation

- Added description to fibonacci.py

- Added README.m

# Please enter the commit message for your changes. Lines st
arting

# with '#' will be ignored, and an empty message aborts the
commit.

=
# On branch master

# Changes to be committed:

i# new file: README . md

# modified: fibonacci.py

#

1 >8 ----mm e e e

# Do not modify or remove the line above.
# Everything below it will be 1ignored.
4,17 Top




1 Terminal

~[fibonacci = git status

On branch master

nothing to commit, working tree clean
~[fibonacci m»




Log
* You can see the history of your repo using the log
subcommand

* Plenty of ways to make it look nicer
- --color, --oneline, --graph, --decorate, --all



I+ Terminal

~/fibonacci = git log --color --oneline --decorate --graph

--all
* 36d88d6 (HEAD -> main) Added user-facing explanation

* 4aftb4df First go at Fibonacci program
~[fibonacci m=»




Checkout

You can travel around the history of your repo!

Use the checkout subcommand to visit a commit by
using its hash

- Make sure your working directory is clean
HEAD is used to refer to where you currently are
You can go “back” from a commit using ~, e.g. HEAD~1



M~ Terminal Q = - o

~/fibonacci »» git checkout HEAD~1
Note: switching to 'HEAD~1'.

You are in 'detached HEAD' state. You can look around, make
experimental

changes and commit them, and you can discard any commits you
make in this

state without impacting any branches by switching back to a
branch.

If you want to create a new branch to retain commits you cre
ate, you may
do so (now or later) by using -c with the switch command. Ex
ample:

git switch -c <new-branch-name>
Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detac
hedHead to false

HEAD is now at 4afb4df First go at Fibonacci program
~/fibonacci w [




< Terminal @] = _ O e

~[fibonacci = git log --color --oneline --decorate --graph

--all
* 36d88d6 (main) Added user-facing explanation

* 4afb4df (HEAD) First go at Fibonacci program
~[fibonacci




+1 Terminal

~f[fibonacci = 1s

fibonacci.py

~[fibonacci = cat fibonacci.py
g3 =l

bt =1

output = "{}, {}".format(a, b)

for 1 in range(3, 10 + 1):
b=a+b
a=b-a
output += ", {}".format(b)

print(output)
~/fibonacci m ||




= Terminal el = _ O e

~[fibonacci = git checkout main

Previous HEAD position was 4afb4df First go at Fibonacci pro
gram

Switched to branch 'main'

~f[fibonacci = 1s

fibonacci.py README.md

~[fibonacci = tail -n 1 fibonacci.py
print("The first 10 numbers are: " + output)
~/fibonacci = |




Branches |I: What

e We can make “alternative timelines”!
e You can think of a branch as a series of commits

e Default branch is called “main” (or “master”)
— This is the branch that you start on

— Generally used as the “up-to-date” and “stable” version
of a project




Branches Il: Why

 Sometimes we want to experiment

* Helps isolate feature development
- Easier to choose not to incorporate a feature

» Collaborative work (we'll get to this later)



Branches lll: How

 To make a branch, use the branch subcommand

* You'll create a branch on the commit that you're
currently on

* If you want to commit to the new branch, check it out!
- You can now also use git switch to switch branches



M~ Terminal

~[fibonacci = git branch user-input
~[fibonacci = git switch user-input
Switched to branch 'user-input'
~[fibonacci = git branch

main
* user-input
~/fibonacci = |




I Terminal ] = _ O g

import sys

a=1
b — 4
length = int(sys.argv[1])
output = "{}, {}".format(a, b)
for 1 in range(3, lengt] + 1):
b=a+b
a=>b-a

output += ", {}".format(b)

print("The first {} numbers are: ".format(length) + output)

i

P

<ibonacci.py” 14L, 234C written 9.24 All




=1 Terminal ] = _ O e

~[fibonacci = python3 fibonacci.py 6
The first 6 numbers are: 1, 1, 2, 3, 5, 8
~[fibonacci = python3 fibonacci.py 20
The first 20 numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765
~/fibonacci = git add --all
~[fibonacci » git commit -m "User can set number of terms”
[user-input 806c33a] User can set number of terms

1 file changed, 5 insertions(+), 2 deletions(-)
~[fibonacci =




[+1

Terminal

~[fibonacci = python3 fibonacci.py cheese
Traceback (most recent call last):
File "fibonacci.py", line 6, in <module>

ValueError: invalid literal for int() with base 10:

length = int(sys.argv[1])

~/fibonacci w ||

'cheese'’




il Terminal @] = _ O e

import sys

a
b
Cry:
length = int(sys.argv[1])
except ValueError:
print("oh no that is not a number! defaulting to 10...")
length = 1
output = "{}, {}".format(a, b)

1
|

for 1 in range(3, length + 1):
b=a+b
a=>b-a
output += ", {}".format(b)

print("The first {} numbers are: ".format(length) + output)
<ibonacci.py" 17L, 338C written 9.15 All




[+1 Terminal 5] = — O

~ffibonacci = python3 fibonacci.py cheese
oh no that is not a number! defaulting to 10...
The first 10 numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
~ffibonacci = git add --all
~ffibonacci = git commit -m "Added input validation"
[user-input 2306883] Added input validation

1 file changed, 5 insertions(+), 2 deletions(-)
~[fibonacci m= t]




i Terminal Q = _ O e

~[fibonacci = git log --color --oneline --decorate --graph
--all

* 2306883 (HEAD -> user-input) Added input validation

* 2806c33a User can set number of terms

* 36d88d6 (main) Added user-facing explanation

* A4afbdadf First go at Fibonacci program

~/fibonacci = |




Merging |: What

 Sometimes we want the changes from more than one
branch

— Could be bug fixes, features, etc.

 So we can merge branch B into branch A to give branch
A the changes from branch B



Merging Il: How

e Switch to the branch you want to merge into

e Use the merge subcommand to merge another branch
into it

— Creates a new commit
- The branch that has been merged in does not change



Merging: In Pictures




Merging: In Pictures




i Terminal O = _ O e

1

output = "{}, {}".format(a, b)

a
b

for 1 in range(3, 10 + 1):
b=a+b
a=b - a
output += ", {}".format(b)

print("The first 10 numbers are: + output)

i

o

o

i

<ibonacci.py" 11L, 177C written 2.5 All




i Terminal o] = O g

~[fibonacci = python3 fibonacci.py
The first 10 numbers are: 1. 3, 4, 7, 11, 18, 29. 47, 76, 12
2

~/fibonacci = git log --color --oneline --decorate --graph
--all

* 219ef08 (HEAD -> main) Changed starting numbers
| * df607e3 (user-input) Added input validation
| * 806c33a User can set number of terms

|/
* 36d88d6 Added user-facing explanation

* Aafb4adf First go at Fibonacci program
~/fibonacci w ||




[+1 Terminal

~/fibonacci = git switch main
Switched to branch 'main’
~/fibonacci » git merge user-input]]




+1 Terminal 9] = _ O @

Werge branch 'user-input' into main

# Please enter a commit message to explain why this merge 1is
necessary,

# especially i1f 1t merges an updated upstream into a topic b
ranch.

-

# Lines starting with '#' will be ignored, and an empty mess

age aborts

# the commit.

1,1 All




+1 Terminal 9] = _ O @

Merged in new user input feature

# Please enter a commit message to explain why this merge 1is
necessary,

# especially i1f 1t merges an updated upstream into a topic b
ranch.

-

# Lines starting with '#' will be ignored, and an empty mess

age aborts

# the commit.




M~ Terminal Q

~/fibonacci = git switch main

Switched to branch 'main’

~/fibonacci = git merge user-input

Auto-merging fibonacci.py

Merge made by the 'recursive' strateqgy.
fibonacci.py | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)

~/fibonacci = i}




=l Terminal | = _ O e

import sys

a 3|
b =23
try:
length = int(sys.argv[1])
except ValueError:
print("oh no that i1s not a number! defaulting to 10...")
length = 10
output = "{}, {}".format(a, b)

for 1 in range(3, length + 1):
b=a+b
a=>b - a
output += ", {}".format(b)

print("The first {} numbers are: ".format(length) + output)




ml Terminal ] = _ O e

~[fibonacci = git log --color --oneline --decorate --graph

--all

*  2195de? (HEAD -> main) Merged new user input feature
A

|

I

* df607e3 (user-input) Added input validation
* 806c33a User can set number of terms

* | el19ef08 Changed starting numbers

|/

* 36d88d6 Added user-facing explanation

* A4afbdadf First go at Fibonacci program
~/fibonacci = [}




Merging Ill: oh no

Sometimes, git can't merge cleanly
This is called a merge conflict

You have to resolve it manually
— Choose which version of the conflict is “correct”
- |t could be a bit of both branches that you want to keep

You should take care when doing this - look it up
online if you're unsure



Changing History

» Part of the benefit of version control is fixing mistakes!

e Use the revert subcommand to undo a commit

— This will make a new commit, whose sole purpose is undoing the
bad commit

e The other option: the reset subcommand (a little more dangerous)

- Soft/Mixed: Doesn’t change your working directory, moves HEAD
back

- Hard: Discards all changes back to a point



| Terminal ] = _ O e

import sys

a a |
b 3

print("fairy longhorn moth!"})

try:
length = int(sys.argv[1])
except ValueError:
print("oh no that is not a number! defaulting to 10...")
length = 10
output = "{}, {}".format(a, b)

for 1 in range(3, length + 1):
b=a+b
a=>b-a
-- VISUAL LINE -- 1 6,29 Top




i Terminal 1 = _ O e

~/fibonacci = git log --color --oneline --decorate --graph
--all

* b2ac5f5 (HEAD -> main) oh no a bug

*  2195de? Merged new user input feature

A

I

I

* df607e3 (user-input) Added input validation
* 806c33a User can set number of terms

* | el9ef08 Changed starting numbers

|/

* 36d88d6 Added user-facing explanation

* A4afbadf First go at Fibonacci program
~/fibonacci = git revert HEA




= Terminal ] = _ O e

~[fibonacci = git log --color --oneline --decorate --graph
--all

* b2ac5f5 (HEAD -> main) oh no a bug

% 2195de? Merged new user input feature

A

|

|

* df607e3 (user-input) Added input validation
* 2806c33a User can set number of terms

* | el19ef08 Changed starting numbers

|/

* 36d88d6 Added user-facing explanation

* Aafb4adf First go at Fibonacci program
~/fibonacci = git revert b2ac5f5j}




i Terminal Q = _ O e

Revert "oh no a bug"

This reverts commit b2ac5f50240f4abdb92b013fc784280cc66f3233

# Please enter the commit message for your changes. Lines st
arting
# with '#' will be ignored, and an empty message aborts the
commit.

On branch main
Changes to be committed:
modified: fibonaccli.py

I HHEHRHRAEH

l

)

<.glt/COMMIT_EDITMSG" 11L, 295C i All




i Terminal Q = _ O e

~[fibonacci = git log --color --oneline --decorate --graph
--all
* a7c4dfS (HEAD -> main) Revert "oh no a bug”
* b2ac5f5 oh no a bug
2195de? Merged new user input feature

\

* df607e3 (user-input) Added input validation

* 2806c33a User can set number of terms

| e19ef08 Changed starting numbers
f’

* 36d88d6 Added user-facing explanation
* 4aftbddf First go at Fibonacci program
~/fibonacci = |

*
|
|
|
*
|




Remote Work

Remote repos are versions of a repo that live online
The remote subcommand lets you manage them
This is how we collaborate!

GitHub, GitLab offer remote repo hosting
— Can also do it yourself


https://github.com/
https://about.gitlab.com/

o Search or jump to... / Pull requests Issues Marketplace Explore

8 samcoy3/ git-good-demo Frivae @Umwatch 1 ~ | & Fok 0 o | p Star 0

¢> Code (°) Issues 19 Pullrequests () Actions [ Projects [ Wiki () Security |~ Insights 3 Settings

¥ main v  § 1branch ©0tags Gowfile |[ Addfile~ About &
An example program that | wrote for my
e samcoy3 Revert "oh no a bug" - a7cadfg 8 minutes ago &) 8 commits "git good" talk!
(3 README.md Added user-facing explanation 1 hour ago 0 Readme
! ; ) ¥¢ O stars
[§ fibonacci.py Revert "oh no a bug" 8 minutes ago
® 1 waitching
% 0 forks
README.md V4
Hello! This is a program which outputs Fibonacci numbers! Releases
| wrote this as an example for the "Git Good" talk! No releases published

Create a new release



+1 Terminal Q = _ O o

~[fibonacci = git remote add origin git@github.com:samcoy3/

git-good-demo.git

~[fibonacci = git push origin main

Warning: Permanently added the ECDSA host key for IP address
'140.82.121.3"' to the list of known hosts.

Enumerating objects: 23, done.

Counting objects: 100% (23/23), done.

Delta compression using up to 8 threads

Compressing objects: 100% (22/22), done.

Writing objects: 100% (23/23), 2.41 KiB | 616.00 KiB/s, done

Total 23 (delta 6), reused 0 (delta 0)
remote: Resolving deltas: 100% (6/6), done.
To github.com:samcoy3/git-good-demo.git

* [new branch] main -> main
~ffibonacci




Remotes and Cloning

* You can get a local copy of a remote repo by cloning it
- Use the clone subcommand

 Depending on permissions, you can then contribute to
the repo

 Some software is distributed using remote git repos



Remotes and Branches

* Branches locally can correspond to branches in a
remote
- We call them <remote>/<branch>, e.g. origin/main

* You can also have branches locally that aren’t on the
remote (and vice versa)



Fetch, Push, and Pull

* Fetching updates what the local repo knows about the
remote repo

e Pushing updates the remote branch with updates from
the local branch

e Pulling a branch updates the local branch with updates
from the remote branch

- Basically fetch + merge



8 samcoy3/ git-good-demo Frivate

¢> Code (©) Issues {9 Pull requests () Actions [ Projects

git-good-demo/ README.md in main

<> Edit file & Preview

Hello! This is a program which outputs Fibonacci numbers!
I wrote this as an example for the "Git Good" talk!

I have made an edit using the GitHub web interface...

(o) T 1 I N /% B AN I



0 Commit changes

Changed README.md using the GitHub web interface

Add an optional extended description...

S.Coy@warwick.ac.uk s

Choose which email address to associate with this commit

@® -0- Commit directly to the main branch.

(O 11 Create a new branch for this commit and start a pull request.

Commit changes Cancel



o Search or jump to... . Pull requests Issues Marketplace Explore

g samcoy3/ git-good-demo Frivate @®Unwatch 1 ~ || ¢ Fok 0 ¢ Star 0

<> Code () Issues 19 Pullrequests (») Actions [ Projects [J1 Wiki () Security |~ Insights  §8&3 Settings

$ main ~ 1branch ©0tags Gotofile  Addfile ~ About &
An example program that | wrote for my
o samcoy3 Changed README.md using the GitHub web interface 2dsaa74 now YY) 9 commits "git good" talk!
[ README.md Changed README.md using the GitHub web interface now 0 Readme
] ) ) ¥¢ Ostars
[M fibonacci.py Revert "oh no a bug" 20 minutes ago
& 1 watching
Y 0 forks
README.md V4
Hello! This is a program which outputs Fibonacci numbers! Releases

No releases published

| wrote this as an example for the "Git Good" talk!
Create a new release

| have made an edit using the GitHub web interface...



" Terminal Q

~/fibonacci = git pull origin main
From github.com:samcoy3/git-good-demo
* branch main -> FETCH_HEAD
Updating a7c4df9..b0de81a
Fast-forward
README.md | 2 ++
1 file changed, 2 insertions(+)
~[fibonacci = tail -n 1 README.md

I made an edit using the GitHub web interface...
~[fibonacci




| Terminal 8] = _ O e

Hello! This is a program which outputs Fibonacci numbers!
I wrote this as an example for the "Git Good" talk!
I made an edit using the GitHub web interface...

I have made another edit locally.
I will now make it appear on GitHubfl

"README.md" 8L, 233C written 8,36 All




M~ Terminal QL

~/fibonacci = git add --all
~[fibonacci = git commit -m "Made local change to README"
[main faal387] Made local change to README

1 file changed, 3 insertions(+)
~f[fibonacci = git push origin main

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 388 bytes | 388.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local
object.
To github.com:samcoy3/git-good-demo.git
bO0de81a..faal387 main -> main

~/fibonacci = |




o Search or jump to... Pull requests Issues Marketplace Explore

g samcoy3/ git-good-demo rrivate & Unwatch 1

<» Code (©) Issues % Pullrequests () Actions [HJ Projects [ Wiki () Security |~ Insights &3 Setti

¥ main - ¥ 1branch 0tags Go to file Add file ~

o samcoy3 Made local change to README faa1387 18 seconds ago ) 10 commits
[ README.md Made local change to README 18 seconds ago
[ fibonacci.py Revert "oh no a bug" 27 minutes ago
README.md V4

Hello! This is a program which outputs Fibonacci numbers!
| wrote this as an example for the "Git Good" talk!
| made an edit using the GitHub web interface...

| have made another edit locally. | will now make it appear on GitHub!



“Pull Requests”

* Arequest for the remote repo owner to make a merge

 When you've made changes on your own branch, and
want them incorporated

e Stupid name
- Has nothing to do with “pulling” really
- GitLab (correctly) call them merge requests



Git In Practice: Top Tips

DO NOT COMMIT SECRETS

Commit little and often
- Less painful to revert smaller changes

Make small branches and merge them in
Clean up dead branches (use branch -d)
DO NOT COMMIT SECRETS



Hate the Commmand Line?

* Lots of software exists for managing git repos
- Git GUI for Windows
— Sourcelree for Mac

 Virtually all modern IDEs have git plugins
e ..including VSCode!



Installing

Windows: https:/git-scm.com/download/win
Mac: https://git-scm.com/download/mac

Both come with options to just use the command line
or to download a GUI program as well

For Linux, use the package manager of your choice
- But on Linux it's almost definitely pre-installed


https://git-scm.com/download/win
https://git-scm.com/download/mac

lgnoring Files

 Sometimes you don’t want to keep track of certain files
- .jar files, _pycache__, databases

o .gitignore contains a list of regexes for git to ignore
- You might have to make this file yourself!



Config

* Gitis very configurable, and a lot can be changed

- Default editor, commit template, global gitignore, merge tool, aliases,
handling of whitespace, default login credentials....

* Use the config subcommand to edit them
— Can do this on a project, user, or system level



EVERYTHING IS ON FIRE HELP

* Especially when inexperienced, easy to mess up
 Someone has messed up exactly how you have before
» ohshitgit.com to fix many common mistakes


https://ohshitgit.com/

So Many More Features

« We've barely scratched the surface of what'’s available
* But you can get value out of only what’s presented here

 Some other things to check out:

- Stashes, tags, rebasing, reflog, cherry-picking, bisect,
blame, hooks...



How to learn more?

Git Reference

- http:/git.github.io/git-reference/index.html
Pro Git

- https:/book.git-scm.com/book/en/v2
Learn Git Branching

- https:/learngitbranching.js.org/

GitHub have useful help pages on many topics


http://git.github.io/git-reference/index.html
https://book.git-scm.com/book/en/v2
https://learngitbranching.js.org/

Questions?



	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

