

Has this ever happened to you?

What’s Wrong With This?
● Have to maintain several copies of near identical files
● A hassle to manage manually

– Multiple files make this even worse
● How do multiple people work on it?
● Even worse if you have multiple files in your project!

Although...
● We care about the history of files sometimes

– But only specific points
– We want to be able to find those points easily

● We want to experiment with changes
– And know we have a safe way to revert

● Tracking changes is important for team projects

Version Control
● Software that tracks changes to source code
● Also called “source control management”
● Examples include SVN, Mercurial, Perforce

– ...and git

Why git?
● git is really very popular

– 85-90% market share
– Used to manage these projects: the Linux Kernel,

Android, Emacs, MySQL, PostgreSQL, Qt, Ruby, Wine,
LibreOffice, MediaWiki, jQuery, Django...

– Used (to at least some extent) by: Apple, Amazon,
Microsoft, Meta, Google...

About git
● Created by Linus Torvalds
● Free, open-source
● 17.5 years old
● https://git-scm.com/

https://git-scm.com/

Aim of This Talk

Give you a basic understanding of git

Convince you that git is a skill worth practicing

Command Line
● Git uses subcommands

– git <subcommand> <arguments>
● Each command has many flags

– man git <subcommand>

Repositories
● The init subcommand makes a new repository

– Also called a “repo”
● A repository is a folder being managed by git

– Think of it as a project
● All information that git needs is stored in the .git folder

Commits I: What
● A commit is a snapshot of history
● Commits have “names”, which are just hashes

– Can be referred to by that hash

Working Directory
● The “state” of your project

– If identical to a commit state, we say it’s “clean”
– If not, we can use the status subcommand to find what’s

changed

Commits II: How
● We have made changes since the last commit
● To make a new commit:

– Stage your changes using the add subcommand
– Use the commit subcommand to make a new commit

with these changes incorporated
● Use the -m flag to title your commit!
● Use the -v flag to write a longer message!

Log
● You can see the history of your repo using the log

subcommand
● Plenty of ways to make it look nicer

– --color, --oneline, --graph, --decorate, --all

Checkout
● You can travel around the history of your repo!
● Use the checkout subcommand to visit a commit by

using its hash
– Make sure your working directory is clean

● HEAD is used to refer to where you currently are
● You can go “back” from a commit using ~, e.g. HEAD~1

Branches I: What
● We can make “alternative timelines”!
● You can think of a branch as a series of commits
● Default branch is called “main” (or “master”)

– This is the branch that you start on
– Generally used as the “up-to-date” and “stable” version

of a project

Branches II: Why
● Sometimes we want to experiment
● Helps isolate feature development

– Easier to choose not to incorporate a feature
● Collaborative work (we’ll get to this later)

Branches III: How
● To make a branch, use the branch subcommand
● You’ll create a branch on the commit that you’re

currently on
● If you want to commit to the new branch, check it out!

– You can now also use git switch to switch branches

Merging I: What
● Sometimes we want the changes from more than one

branch
– Could be bug fixes, features, etc.

● So we can merge branch B into branch A to give branch
A the changes from branch B

Merging II: How
● Switch to the branch you want to merge into
● Use the merge subcommand to merge another branch

into it
– Creates a new commit
– The branch that has been merged in does not change

Merging: In Pictures

Merging: In Pictures

Merging III: oh no
● Sometimes, git can’t merge cleanly
● This is called a merge conflict
● You have to resolve it manually

– Choose which version of the conflict is “correct”
– It could be a bit of both branches that you want to keep

● You should take care when doing this – look it up
online if you’re unsure

Changing History
● Part of the benefit of version control is fixing mistakes!
● Use the revert subcommand to undo a commit

– This will make a new commit, whose sole purpose is undoing the
bad commit

● The other option: the reset subcommand (a little more dangerous)
– Soft/Mixed: Doesn’t change your working directory, moves HEAD

back
– Hard: Discards all changes back to a point

Remote Work
● Remote repos are versions of a repo that live online
● The remote subcommand lets you manage them
● This is how we collaborate!
● GitHub, GitLab offer remote repo hosting

– Can also do it yourself

https://github.com/
https://about.gitlab.com/

Remotes and Cloning
● You can get a local copy of a remote repo by cloning it

– Use the clone subcommand
● Depending on permissions, you can then contribute to

the repo
● Some software is distributed using remote git repos

Remotes and Branches
● Branches locally can correspond to branches in a

remote
– We call them <remote>/<branch>, e.g. origin/main

● You can also have branches locally that aren’t on the
remote (and vice versa)

Fetch, Push, and Pull
● Fetching updates what the local repo knows about the

remote repo
● Pushing updates the remote branch with updates from

the local branch
● Pulling a branch updates the local branch with updates

from the remote branch
– Basically fetch + merge

“Pull Requests”
● A request for the remote repo owner to make a merge
● When you’ve made changes on your own branch, and

want them incorporated
● Stupid name

– Has nothing to do with “pulling” really
– GitLab (correctly) call them merge requests

Git In Practice: Top Tips
● DO NOT COMMIT SECRETS
● Commit little and often

– Less painful to revert smaller changes
● Make small branches and merge them in
● Clean up dead branches (use branch -d)
● DO NOT COMMIT SECRETS

Hate the Command Line?
● Lots of software exists for managing git repos

– Git GUI for Windows
– SourceTree for Mac

● Virtually all modern IDEs have git plugins
● ...including VSCode!

Installing
● Windows: https://git-scm.com/download/win
● Mac: https://git-scm.com/download/mac
● Both come with options to just use the command line

or to download a GUI program as well
● For Linux, use the package manager of your choice

– But on Linux it’s almost definitely pre-installed

https://git-scm.com/download/win
https://git-scm.com/download/mac

Ignoring Files
● Sometimes you don’t want to keep track of certain files

– .jar files, __pycache__, databases
● .gitignore contains a list of regexes for git to ignore

– You might have to make this file yourself!

Config
● Git is very configurable, and a lot can be changed

– Default editor, commit template, global gitignore, merge tool, aliases,
handling of whitespace, default login credentials….

● Use the config subcommand to edit them
– Can do this on a project, user, or system level

EVERYTHING IS ON FIRE HELP
● Especially when inexperienced, easy to mess up
● Someone has messed up exactly how you have before
● ohshitgit.com to fix many common mistakes

https://ohshitgit.com/

So Many More Features
● We’ve barely scratched the surface of what’s available
● But you can get value out of only what’s presented here
● Some other things to check out:

– Stashes, tags, rebasing, reflog, cherry-picking, bisect,
blame, hooks...

How to learn more?
● Git Reference

– http://git.github.io/git-reference/index.html
● Pro Git

– https://book.git-scm.com/book/en/v2
● Learn Git Branching

– https://learngitbranching.js.org/
● GitHub have useful help pages on many topics

http://git.github.io/git-reference/index.html
https://book.git-scm.com/book/en/v2
https://learngitbranching.js.org/

Questions?

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

